An Adaptive Upper-Arm EMG-Based Robot Control System
نویسندگان
چکیده
The human-assisting robot can be helpful for improving the life quality of the disabled and elderly. As Electromyography (EMG) is a physiological signal generated during muscle contraction, it implicates, to certain extent, the human intention for movement, and is thus very suitable to serve as the control signal for the assisting robot. In this paper, we develop an upper-arm EMG-based robot control system, which provides a natural and intuitive manipulation. To satisfy the demand of real-time control, we propose a simple and effective method for the mapping between the upper-arm EMG signal and corresponding movement. However, due to the fuzziness inherent in the EMG signals, which are time-varying and highly nonlinear, the tuning for system parameters is not that straightforward. We therefore employ the concept of fuzzy system to find proper parameters that better suit for the individual users. To provide better adaptive capability, we propose using the adaptive neuro-fuzzy inference system (ANFIS) to realize the fuzzy system. We perform a series of experiments to demonstrate the effectiveness of the proposed adaptive upper-arm EMG-based robot control system.
منابع مشابه
Upper-Limb EMG-Based Robot Motion Governing Using Empirical Mode Decomposition and Adaptive Neural Fuzzy Inference System
To improve the quality of life for the disabled and elderly, this paper develops an upperlimb, EMG-based robot control system to provide natural, intuitive manipulation for robot arm motions. Considering the non-stationary and nonlinear characteristics of the Electromyography (EMG) signals, especially when multi-DOF movements are involved, an empirical mode decomposition method is introduced to...
متن کاملA New Type-2 Fuzzy Systems for Flexible-Joint Robot Arm Control
In this paper an adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented. The capability of the proposed method (we named ANFIS2) to function approximation and dynamical system identification is shown. The ANFIS2 structure ...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملAdaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملDesigning a Robust Control Scheme for Robotic Systems with an Adaptive Observer
This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010